D. J. Scott
[Last Update: June 28th, 2018]

Other


Protoplanetary Disk Snowline Sublimation & Recondensation Simulation
Protoplanetary Disk Snowline Collision Simulation


Related Articles


“Mitochondrigeny”


About


About this Website
About the Author
Services & Rates
Contact Me

Donate!
D. Jon Scott’s WebsiteSciencePhysicsChemistryBiologyEvolution

X-Philes:

Prokaryotic Extremophiles
Copyright © 2018 by Dustin Jon Scott
[Last Update: June 6th, 2018]

Abstract

Part I

Extremophiles by Type

Part I.a.

Acidophiles & Hyperacidotolerant, Near-Acidophilic Prokaryotic Neutriphiles

This group includes organisms capable of thriving in hyperacidic conditions, most of which have an optimal growth pH of 5 or lower (OGpH<5), although a few have an OGpH slightly above this (e.g., Nanoarchaeum equitans, OGpH=6) but can nonetheless be found flourishing in hyperacidic environments (pH=0.5-1.5).

Part I.a-1.)

Acidophiles & Hyperacidotolerant, Near-Acidophilic Archaeal Neutriphiles

Part I.a-2.)

Acidophiles & Hyperacidotolerant, Near-Acidophilic Bacterial Neutriphiles

Part I.a-3.)

Comparison of Acidophiles & Hyperacidotolerant, Near-Acidophilic Neutriphiles
Part I.a-3A.)
Comparison of Acidophilic & Hyperacidotolerant, Near-Acidophilic Prokaryotic Genera
Described Genera
Domain Genus Source Ratio N>H0
Archaea
27/43
(62.79%)
Acidianus Johnson, 1998; Zhang et al., 2015 27:16 5.5 (25.58%)
Acidiplasma Zhang et al., 2015
Aenigmarchaeum Golyshina et al., 2017
Cuniculiplasma Golyshina et al. 2016
Ferroplasma Dopson et al.2003; Zhang et al., 2015
Halarchaeum ()
Candidatus Haloredivivus Golyshina et al., 2017
Candidatus Lainarchaeum Golyshina et al., 2017
Candidatus Mancarchaeum ()
Metallosphaera Johnson, 1998
Candidatus Micrarchaeum Baker et al., 2010
Nanoarchaeum Golyshina et al., 2017
Nanobsidianus
Nanopusillus
Candidatus Nanosalina Golyshina et al., 2017
Candidatus Nanosalinarum Golyshina et al., 2017
Nitrosopumilus Lehtovirta-Morley et al., 2014
Nitrosotalea Lehtovirta-Morley et al., 2011 2014)
Candidatus Parvarchaeum Baker et al., 2010
Picrophilus Rampelotto, 2013, Johnson, 1998; Zhang et al., 2015
Stygiolobus Johnson, 1998
Sulfolobus Johnson, 1998; Zhang et al., 2015
Sulfurisphaera ()
Sulfurococcus Johnson, 1998
Thermogymnomonas ()
Thermoplasma Johnson, 1998; Zhang et al., 2015
Bacteria
16/43
(37.21%)
Acetobacter Johnson, 1998
Acidiphilium Johnson, 1998; Fashola et al., 2015
Acidithiobacillus Johnson, 1998
Acidobacterium Johnson, 1998
Acidimicrobium Johnson, 1998
Acidocella Johnson, 1998; Fashola et al., 2015
Acidomonas Johnson, 1998
Alicyclobacillus Johnson, 1998; Fashola et al., 2015
Bryocella ()
Ferrimicrobium Johnson, 1998
Helicobacter
Leptospirillum Johnson, 1998; Lehtovirta-Morley et al., 2014
Sulfobacillus Johnson, 1998; Fashola et al., 2015
Telmatobacter ()
Thiobacillus Johnson, 1998
Thiomonas Johnson, 1998
Generic goodness-of-fit
DomainObservedH0O-H0(O-H0)2(O-H0)2/H0
Archaea27/43 (62.79%)21.5/43 (50%)5.5 (12.79%)30.25 (163.60%)1.406976744186047 (3.27%)
Bacteria16/43 (37.21%)21.5/43 (50%)-5.5 (-12.79%)30.25 (163.60%)1.406976744186047 (3.27%)
X2=2.813953488372094
Df=1
α/2=?
X2CV=?
Part I.a-3B.)
Comparison of Acidophilic & Hyperacidotolerant, Near-Acidophilic Prokaryotic Species
Described Species
Domain Genus & Species OGpH pH range Source Ratio N(50%)>H0
Archaea
86/124
(69%)
Acidianus ambivalens 2.5 1-3.5 Johnson, 1998; Zhang et al., 2015 86:38 38%
Acidianus brierleyi 1.5-2 1-6 Johnson, 1998; Edwards et al., 2000; Fashola et al., 2015; Zhang et al., 2015
Acidianus convivator <4 ? ()
Acidianus copahuensis 2.5-3 1-5 Zhang et al., 2015
Acidianus infernus 2 1-5.5 Johnson, 1998; Zhang et al., 2015
Acidianus manzaensis 1.2-2.5 1-5 Ding et al. 2011; Zhang et al., 2015
Acidianus pozzuoliensis ?
Acidianus sulfidivorans 0.8-1.4 0.35-3 Plumb et al. 2007; Zhang et al., 2015
Acidianus tengchongensis 1.5-2.5 1-5.5 He et al. 2004; Zhang et al., 2015
Acidianus sp. DSM 29099 ? ? Zhang et al., 2015
Acidianus sp. RZ1 ? ? Zhang et al., 2015
Acidiplasma aeolicum 1.4-1.6 0-4 Zhang et al., 2015
Acidiplasma cupricumulans 1-1.2 0.4-1.8 Zhang et al., 2015
Candidatus Aenigmarchaeum subterraneum 0.5-1.5 ? Baker et al., 2006; Golyshina et al., 2017
Candidatus Cenarchaeum symbiosum A <4 ? Herbold et al., 2017
Cuniculiplasma divulgatum 1-1.2 ? Golyshina et al. 2016
Ferroplasma acidarmanus 1.2 0-2.5 Edwards et al., 2000, Dopson et al.2003; Zhang et al., 2015
Ferroplasma acidiphilum 1.7 1.3-2.2 Fashola et al., 2015; Zhang et al., 2015
Ferroplasma acidiphilum BRGM4 ? ? Zhang et al., 2015
Ferroplasma cyprexacervatum <4 ? ()
Ferroplasma thermophilum 1 0.2-2.5 Zhang et al., 2015
Halarchaeum acidiphilum <4 ? ()
Candidatus Haloredivivus sp. 0.5-1.5 ? Baker et al., 2006; Golyshina et al., 2017
Candidatus Lainarchaeum andersonii 0.5-1.5 ? Baker et al., 2006; Golyshina et al., 2017
Candidatus Mancarchaeum acidiphilum 0.5-1.5 ? Baker et al., 2006; Golyshina et al., 2017
Metallosphaera cuprina 3.5 2.5-5.5 Zhang et al., 2015
Metallosphaera hakonensis 3 1-4 Zhang et al., 2015
Metallosphaera prunae 2 1-4.5 Johnson, 1998; Zhang et al., 2015
Metallosphaera sedula 2 1-4.5 Johnson, 1998; Fashola et al., 2015; Zhang et al., 2015
Metallosphaera yellowstonensis 2-3 1-4.5 Zhang et al., 2015
Candidatus Micrarchaeum acidiphilum 0.5-1.5 ? Baker et al., 2006; Baker et al., 2010; Golyshina et al., 2017
Candidatus Nanoarchaeum equitans 6*; 0.5-1.5 ? Baker et al., 2006; Baker et al., 2010; Golyshina et al., 2017
Nanobsidianus stetteri ?
Nanopusillus acidilobi sp. ?
Candidatus Nanosalina sp. 0.5-1.5 ? Baker et al., 2006; Baker et al., 2010; Golyshina et al., 2017
Candidatus Nanosalinarum sp. 0.5-1.5 ? Baker et al., 2006; Baker et al., 2010; Golyshina et al., 2017
Candidatus Nitrosoarchaeum koreensis <4 ? Herbold et al., 2017
Candidatus Nitrosoarchaeum limnia <4 ? Herbold et al., 2017
Candidatus Nitrosoarchaeum limnia <4 ? Herbold et al., 2017
Candidatus Nitrosocosmicus oleophilus <4 ? Herbold et al., 2017
Candidatus Nitrosopelagicus brevis <4 ? Herbold et al., 2017
Candidatus Nitrosopumilus maritimus <4 ? Lehtovirta-Morley et al., 2014; Herbold et al., 2017
Candidatus Nitrosopumilus viennensis <4 ? Lehtovirta-Morley et al., 2014
Candidatus Nitrosopumilus sp. SJ <4 ? Herbold et al., 2017
Candidatus Nitrosopumilus sp. NF5 <4 ? Herbold et al., 2017
Candidatus Nitrosopumilus sp. AR1 <4 ? Herbold et al., 2017
Candidatus Nitrosopumilus sp. AR2 <4 ? Herbold et al., 2017
Candidatus Nitrosopumilus salaria <4 ? Herbold et al., 2017
Candidatus Nitrosopumilus sp. D3C <4 ? Herbold et al., 2017
Candidatus Nitrososphaera evergladensis <4 ? Herbold et al., 2017
Candidatus Nitrososphaera viennensis <4 ? Herbold et al., 2017
Candidatus Nitrososphaera gargensis <4 ? Herbold et al., 2017
Candidatus Nitrosotalea okcheonensis <4 ? Herbold et al., 2017
Candidatus Nitrosotalea sinensis <4 ? Herbold et al., 2017
Candidatus Nitrosotalea devanaterra 4-5 ? Lehtovirta-Morley et al., 2011 & 2014; Herbold et al., 2017
Candidatus Nitrosotalea bavarica <4 ? Herbold et al., 2017
Candidatus Nitrosotenuis uzonensis <4 ? Herbold et al., 2017
Candidatus Nitrosotenuis chungbukensis <4 ? Herbold et al., 2017
Candidatus Nitrosotenuis cloacae <4 ? Herbold et al., 2017
Candidatus Parvarchaeum acidiphilum 0.5-1.5 ? Baker et al., 2006; Baker et al., 2010; Golyshina et al., 2017
Candidatus Parvarchaeum acidophilus 0.5-1.5 ? Baker et al., 2006; Baker et al., 2010; Golyshina et al., 2017
Picrophilus sp. 1 ? (Baker-Austin & Dopson, 2007)
Picrophilus oshimae 0.7-2.2 ≥0-3.5 Rampelotto, 2013, Johnson, 1998
Picrophilus torridus 0.06-0.07 ≥0-3.5 Rampelotto, 2013, Johnson, 1998; Zhang et al., 2015
Stygiolobus azoricus 2.5-3 1-5.5 Johnson, 1998; Zhang et al., 2015
Sulfolobus acidocaldarius 2-3 1-5.9 Johnson, 1998; Edwards et al., 2000; Zhang et al., 2015
Sulfolobus hakonensis <3 ? Johnson, 1998
Sulfolobus islandicus <4 ? ()
Sulfolobus metallicus ? 1-4.5 Johnson, 1998; Fashola et al., 2015; Zhang et al., 2015
Sulfolobus mirabilis <3 ? Johnson, 1998
Sulfolobus neozealandicus ? ? ()
Sulfolobus rivotinct ? ? Zhang et al., 2015
Sulfolobus shibatae 3 ? Johnson, 1998; Zhang et al., 2015
Sulfolobus solfataricus 3 2-4 Johnson, 1998, Dopson (2003); Zhang et al., 2015
Sulfolobus tengchongensis 3.5 1.7-6.5 Zhang et al., 2015
Sulfolobus thuringiensis ? ? ()
Sulfolobus tokodaii 2.5-3 2-5 Dopson 2003; Zhang et al., 2015
Sulfolobus yangmingensis 4 2-6 Zhang et al., 2015
Sulfurisphaera ohwakuensis 2 1-5 Zhang et al., 2015
Sulfurococcus mirabilis 2-2.6 1-5.8 Zhang et al., 2015
Sulfurococcus yellowstonensis 2-2.6 1-5.5 Zhang et al., 2015
Sulfurococcus yellowstonii ? ? Johnson, 1998
Thermococcus celer 5.8 ? Zhang et al., 2015
Thermogymnomonas acidocola 3 1.8-4 Zhang et al., 2015
Thermoplasma acidophilum 1.8 0.5-4 Johnson, 1998; Zhang et al., 2015
Thermoplasma volcanium 2 1-4 Johnson, 1998; Zhang et al., 2015
Bacteria
38/124
(31%)
Acetobacter aceti ? Johnson, 1998
Acidiphilium acidophilum
(Thiobacillus acidophilus)
<3 ? Johnson, 1998
Acidiphilium multivorum <3 ? (Dopson 2003)
Acidithiobacillus albertensis
(Thiobacillus albertis)
<3 ? Johnson, 1998; Fashola et al., 2015
Acidithiobacillus caldus
(Thiobacillus caldus)
<3 ? Johnson, 1998;
Fashola et al., 2015; Zhang et al., 2015
Acidithiobacillus ferridurans <4 ? ()
Acidithiobacillus ferriphilus <4 ? ()
Acidithiobacillus ferrivorans <4 ? (Fashola et al., 2015)
Acidithiobacillus ferro(o)xidans
(Thiobacillus ferrooxidans)
<3 ? Johnson, 1998; Fashola et al., 2015; Zhang et al., 2015
Acidithiobacillus thioxidans
(Thiobacillus thioxidans)
<3 ? Johnson, 1998; Fashola et al., 2015; Zhang et al., 2015
Acidobacterium capsulatum <3 ? Johnson, 1998; Fashola et al., 2015
Acidimicrobium ferroxidans <3 ? Johnson, 1998; Fashola et al., 2015
Acidocella spp. <3 ? Johnson, 1998
Acidomonas methanolica <3 ? Johnson, 1998
Alicyclobacillus thermosulfidooxidans <3 ? Johnson, 1998
Alicyclobacillus thermosulfidooxidans
(Sulfobacillus thermosulfidooxidans)
<3 ? Johnson, 1998; Fashola et al., 2015; Zhang et al., 2015
Bryocella elongata <4 ? ()
Ferrimicrobium acidiphilum <3 ? Johnson, 1998
Ferrimicrobium acidiphilus <3 ? Fashola et al., 2015
Gallionella ferruginea ? (Fashola et al., 2015)
Helicobacter pylori ?
Hydrogenobacter acidophilus ? (Fashola et al., 2015)
Leptospirillum ferriphilum <3 ? Lehtovirta-Morley et al., 2014; Zhang et al., 2015
Leptospirillum ferro(o)xidans <3 ? Johnson, 1998; Fashola et al., 2015; Zhang et al., 2015
Leptospirillum thermoferrooxidans <3 ? Johnson, 1998
Sulfobacillus acidophilus <3 ? Johnson, 1998; Fashola et al., 2015
Telmatobacter bradus <4 ? ()
Thiobacillus acidophilus <4 ? ()
Thiobacillus dentrificans ? (Fashola et al., 2015)
Thiobacillus organovorus <4 ? ()
Thiobacillus prosperus <3 ? Johnson, 1998
Thiomonas cuprina
(Thiobacillus cuprinus)
<3 ? Johnson, 1998
Desulfovibrio sp. ? ? Fashola et al., 2015
Desulfomicrobium sp. ? ? Fashola et al., 2015
Desulfobulbus sp. ? ? Fashola et al., 2015
Desulfosarcina sp. ? ? Fashola et al., 2015
Desulfobacter sp. ? ? Fashola et al., 2015
Desulfotomaculum sp. ? ? Fashola et al., 2015
Specific goodness-of-fit
DomainObservedExpectedO-E(O-E)2(O-E)2/E
Archaea8662245769.2903225806451
Bacteria3862-245769.2903225806451
Df=1
X2 crit=3.41
X2=18.5806451612902
Specific % goodness-of-fit
DomainObserved %Expected %O-E(O-E)2(O-E)2/E
Archaea6950193617.22
Bacteria3150-193617.22
Df=1
X2 crit=3.41
X2=14.44


Ding et al., 2011
Dopson et al., 2003
Baker et al., 2010
Plumb et al., 2007
Whitman et al., 1999
"Nitrosotalea is an abundant, globally distributed genus of AOA found in acidic soils (Gubry-Rangin et al., 2011). Thirty per cent of the world's soils are considered acidic (pH < 5.5; von Uexküll & Mutert, 1995), and ammonia oxidation in low pH soils is dominated by AOA, rather than AOB (Gubry-Rangin et al., 2010; Lehtovirta-Morley et al., 2011)."

Craig W. Herbold, Laura E. Lehtovirta-Morley, Man-Young Jung, Nico Jehmlich, Bela Hausmann, Ping Han, Alexander Loy, Michael Pester, Luis A. Sayavedra-Soto, Sung-Keun Rhee, James I. Prosser, Graeme W. Nicol, Michael Wagner and Cecile Gubry-Rangin. Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environmental Microbiology (2017) 19(12), 4939–4952

Part I.b.

Alkaliphiles

Part I.b-1.)

Archaeal Alkaliphiles

Part I.b-2.)

Bacterial Alkaliphiles

Part I.b-3.)

Comparison of Alkaliphilic Prokaryotes
Part I.b-3A.)
Comparison of Alkaliphilic Genera
Described Genera
Domain Genus & Species A B Ratio %>H0
Archaea Halalkalicoccus 15/16 (93.75%) 1/16 (6.25%) 87.5% 16:1
Haloarcula
Halobaculum
Halobiforma
Haloferax
Halorubrum gandharaense
Nanobacterium gregoryi
Natronococcus amylolyticus
Natronococcus jeotgali
Natronococcus occultus
Natronolimnobius
Natronomonas pharaonis
Natronorubrum
Thermococcus alkaliphilus
Thermococcus acidaminovorans
Methanohalophilus
Bacteria (Coming Soon)
Part I.b-3A.)
Comparison of Alkaliphilic Species
Described Species
Domain Genus & Species A B Ratio %>H0
Archaea Halalkalicoccus 15/16 (93.75%) 1/16 (6.25%) 16:1 87.5%
Haloarcula
Halobaculum
Halobiforma
Haloferax
Halorubrum gandharaense
Nanobacterium gregoryi
Natronococcus amylolyticus
Natronococcus jeotgali
Natronococcus occultus
Natronolimnobius
Natronomonas pharaonis
Natronorubrum
Thermococcus alkaliphilus
Thermococcus acidaminovorans
Methanohalophilus
Bacteria (Coming Soon)

Elis Watanable Nogueira, Elize Ayumi Hayash, Enne Alves, Claudio Antônio de Andrade Lima, Maria Talarico Adorno, Gunther Brucha. Characterization of Alkaliphilic Bacteria Isolated from Bauxite Residue in the Southern Region of Minas Gerais, Brazil. Brazilian Archives of Biology and Technology vol.60 Curitiba 2017 Epub May 11, 2017
http://dx.doi.org/10.1590/1678-4324-2017160215

Part I.c.

Barophiles

Part I.c-1.)

Archaeal Barophiles

Part I.c-2.)

Bacterial Barophiles

Part I.c-3.)

Comparison of Barophilic Prokaryotes
Part I.c-3A.)
Comparison of Barophilic Genera
Domain Genus Ratio σ ρ %>H0
Archaea Pyrococcus 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Salinicola
Domain Genus & Species Ratio σ ρ %>H0
Archaea Pyrococcus abyssi 6:1 1/7 (14%) 6/7 (86%) 72%
Pyrococcus endeavori
Pyrococcus furiosis
Pyrococcus glycovorans
Pyrococcus horikoshii
Pyrococcus woesei
Bacteria Salinicola salarius

(Gareeb & Setati, 2009)
(Pikuta et al., 2017)

Part I.d.

Halophiles

Part I.d-1.)

Archaeal Halophiles

Part I.d-2.)

Bacterial Halophiles

Part I.d-3.)

Comparison of Halophilic Prokaryotes
Part I.d-3A.)
Comparison of Halophilic Genera
Domain Genus & Species Ratio σ ρ %>H0
Archaea Pyrococcus abyssi 6:1 1/7 (14%) 6/7 (86%) 72%
Pyrococcus endeavori
Pyrococcus furiosis
Pyrococcus glycovorans
Pyrococcus horikoshii
Pyrococcus woesei
Bacteria Salinicola salarius
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank

Part I.e.

Haloalkaliphiles

Part I.e-1.)

Archaeal Haloalkiphiles

Part I.e-2.)

Bacterial Haloalkaliphiles

Part I.e-3.)

Comparison of Haloaaliphilic Prokaryotes
Part I.e-3A.)
Comparison of Haloaliphilic Genera
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank

Part I.f.

Hyperthermophiles

Part I.f-1.)

Archaeal Hyperthermophiles

Part I.f-2.)

Bacterial Hyperthermophiles

Part I.f-3.)

Comparison of Hyperthermophilic Prokaryotes
Part I.f-3A.)
Comparison of Hyperthermophilic Genera
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank
Domain Genus & Species Ratio σ ρ %>H0
Archaea Aeropyrum pernix 6:1 1/7 (14%) 6/7 (86%) 72%
Pyrolobus fumaril
Pyrococcus furiosus
Archaeoglobus fulgidis
Methanococcus jannaschii
Stygiolobus azoricus
Sulfolobus acidocaldarius
Sulfolobus islandicus
Sulfolobus neozealandicus
Sulfolobus shibatae
Sulfolobus solfataricus
Sulfolobus tengchongensis
Sulfolobus thuringiensis
Sulfolobus tokodaii
Sulfolobus yangmingensis
Methanopyrus kandleri
"Strain 121"
Bacteria Aquifex aeolicus
Geothermobacterium ferrireducens
Theromotoga maritima

Part I.g.

Thermoacidophiles

Part I.g-1.)

Archaeal Thermoacidophiles

Part I.g-2.)

Bacterial Thermoacidophiles

Part I.g-3.)

Comparison of Thermoacidophilic Prokaryotes
Part I.g-3A.)
Comparison of Thermoacidophilic Genera
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank

Part I.h.

Thermobarophiles

Part I.h-1.)

Archaeal Thermobarophiles

Part I.h-2.)

Bacterial Thermobarophiles

Part I.h-3.)

Comparison of Thermobarophilic Prokaryotes
Part I.h-3A.)
Comparison of Thermobarophilic Genera
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank

Part I.i.

Radioresistant Prokaryotes

Part I.i-1.)

Radioresistant Archaea

Part I.i-2.)

Radioresistant Bacteria

Part I.i-3.)

Comparison of Radioresistant Prokaryotes
Part I.i-3A.)
Comparison of Radioresistant Genera
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank
Domain Genus & Species Ratio σ ρ %>H0
Archaea Pyrococcus furiosis 1:4 1/5 (20% 4/5 (80%) 60%
Haloferax volcanii
Natrialba magadii
Thermococcus gammatolerans
BacteriaBacillus subtilis
Bacillus atropheus
Bacillus thuringiensis
Bacillus cereus
Bacillus megaterium
Deinococcus radiodurans
Escherichia coli
Rubrobacter sp.
Achromobacter sp.
Acinetobacter sp.
Alcaligenes sp.
Enterococcus sp.
Micrococcus sp.
Pseudomonas sp.
Staphylococcus sp.
Streptococcus sp.

(Abrevaya et al., 2011)
(Bucker & Horneck, 1970)
(Horneck, 1971)
(Nicholson, et al. 2005)

Part I.j.

Xerophilic Prokaryotes

Part I.j-1.)

Archaeal Xerophiles

Part I.j-2.)

Bacterial Xerophiles

Part I.j-3.)

Comparison of Xerophilic Prokaryotes
Part I.j-3A.)
Comparison of Xerophilic Genera
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank
Domain Genus & Species Ratio σ ρ %>H0
Bacteria Bacillus subtilis 2:0 0/2 (0%) 1/1 (100%) 100%
Escherichia coli

Part I.k.

Cryophilic Prokaryotes

Part I.k-1.)

Archaeal Cryophiles

Part I.k-2.)

Bacterial Cryophiles

Part I.k-3.)

Comparison of Cryophilic Prokaryotes
Part I.k-3A.)
Comparison of Cryophilic Genera
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank
Domain Genus & Species Ratio σ ρ %>H0
Bacteria Bacillus subtilis 2:0 0/2 (0%) 1/1 (100%) 100%
Escherichia coli

Part I.l.

Hypobarotolerant Prokaryotes

Part I.l-1.)

Hypobarotolerant Archaea

Part I.l-2.)

Hypobarotolerant Bacteria

Part I.l-3.)

Comparison of Hypobarotolerant Prokaryotes
Part I.l-3A.)
Comparison of Hypobarotolerant Genera
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank

Part I.m.

Part II

Trends in Specializations of Prokaryotic Extremophiles

Part II.a.

Planetary versus Spacial Extremes

If the Archaea evolved on Earth as the Bacteria were evolving on Mars, and there was occasional cross-contamination which intensified during the LHB, then we should expect extremophiles which specialize in tolerating spacial extremes, like cold, drouth, low pressure, radioactivity, hyperacceleration and hypergravity, to be found mostly among the Bacteria, while extremophiles among the Archaea should be expected more often to specialize in tolerating decidedly planetary extremes such as heat, high pressure, acidity, salinity, and alkalinity.

Part II.a-1.)

Totals for Planetary Extremes
General count
Extreme Domain Number Ratio σ ρ %>H0
Acidity Archaea 18 18:7 7/25 (28%) 18/25 (72%) 44%
Bacteria 7
Alkalinity Archaea 6 16:1 1/16 (6.25%) 15/16 (93.75%) 87.5%
Bacteria 1
Salinity Archaea
Bacteria
High Pressure Archaea 6 6:1 1/7 (14%) 6/7 (86%) 72%
Bacteria 1
Heat Archaea 18 6:1 1/7 (14%) 6/7 (86%) 72%
Bacteria 3
Total Archaea
Bacteria
Archaeal genera goodness-of-fit
Extremophile typeObservedExpectedO-E(O-E)2(O-E)2/E
Acidophilic1812.55.530.252.42
Alkaliphilic1688648
Barophilic63.52.56.251.79
Halophilic
Haloalkaliphilic
Hyperthermophilic1810.57.556.255.36
Thermoacidophilic
Thermobarophilic
X2=
Special count
Extreme Domain Number Ratio σ ρ %>H0
Acidity Archaea 18 18:7 7/25 (28%) 18/25 (72%) 44%
Bacteria 7
Alkalinity Archaea 6 16:1 1/16 (6.25%) 15/16 (93.75%) 87.5%
Bacteria 1
Salinity Archaea
Bacteria
High Pressure Archaea 6 6:1 1/7 (14%) 6/7 (86%) 72%
Bacteria 1
Heat Archaea 18 6:1 1/7 (14%) 6/7 (86%) 72%
Bacteria 3
Total Archaea
Bacteria
Archaeal species goodness-of-fit
Extremophile typeObservedExpectedO-E(O-E)2(O-E)2/E
Acidophilic1812.55.530.252.42
Alkaliphilic1688648
Barophilic63.52.56.251.79
Halophilic
Haloalkaliphilic
Hyperthermophilic1810.57.556.255.36
Thermoacidophilic
Thermobarophilic
X2=

Part II.a-2.)

Totals for Spacial Extremes
Domain Genus & Species Ratio σ ρ %>H0
Archaea Blank 1:1 1/2 (50%) 1/2 (50%) 0%
Bacteria Blank
Extreme Domain Number Ratio σ ρ %>H0
Radioactivity Archaea 4 4:1 1/5 (20%) 4/5 (80%) 60%
Bacteria 20
Hyperacceleration / Hypergravity Archaea
Bacteria 2
Low Pressure Archaea
Bacteria
Cold Archaea
Bacteria
Drouth Archaea 0 2:0 0/2 (0%) 1/1 (100%) 100%
Bacteria 2
Total Archaea
Bacteria

Part II.a-3.)

Totals for Terrestrial versus Spacial Extremes
Extreme Type Ratio σ(%)<(ρ=100%) ≈ ρ ≈ %>H0
Acidity Planetary 18:7 7/25 (28%) 18/25 (72%) 44%
Alkalinity 16:1 1/16 (6.25%) 15/16 (93.75%) 87.5%
Salinity
High Pressure 6:1 1/7 (14%) 6/7 (86%) 72%
Heat 6:1 1/7 (14%) 6/7 (86%) 72%
Radioactivity Spacial 1:4 1/5 (20%) 4/5 (80%) 60%
Hyperacceleration / Hypergravity
Low Pressure
Cold
Drouth 2:0 0/2 (0%) 1/1 (100%) 100%

Archaeal goodness-of-fit
Extremophile typeObservedExpectedO-E(O-E)2(O-E)2/E
Planetary75%50%25%125%75%
Spacial25%50%-25%125%75%
Df=1
X2=0.075

Bacterial goodness-of-fit
Extremophile typeObserved %Expected %O-E(O-E)2(O-E)2/E
Planetary2550-251252.5
Spacial7550251252.5
Df=1
X2=5

Extremophile typeρH0ρ-H0(ρ-H0)2(ρ-H0)2/H0
Acidophile
X2=

Part II.b.

Terrestrial versus [Martian+Spacial] Extremes

If the Archaea evolved on Earth as the Bacteria were evolving on Mars, and there was occasional cross-contamination which intensified during the LHB, then we should expect extremophiles which specialize in tolerating spacial extremes, like cold, drouth, low pressure, radioactivity, hyperacceleration and hypergravity, to be found mostly among the Bacteria, while extremophiles among the Archaea should be expected more often to specialize in tolerating decidedly planetary extremes such as heat, high pressure, acidity, salinity, and alkalinity.

Part II.b-1.)

Totals for Terrestrial Extremes

Part II.b-2.)

Totals for [Martian+Spacial] Extremes

Part II.c.

Limitations on Methodology

General and special counts performed with described genera and species are necessarily problematic, for several reasons:

1.

Species and genera are largely arbitrary, especially in prokaryotes.

2.

The number of genera and species can change.

3.

Performing the count is difficult. Even under ideal circumstances (i.e., a perfect, non-arbitrary, universally applicable criterion for determining taxonomic rank, complete genomic knowledge of every living organism on the planet, phylogenies already well-determined and described in the published literature, and every species' tolerances and optimal growth conditions studied in painstaking detail and accurately described) it would be a monumental task to sift through and pore over the seemingly infinite number of papers, journal articles, and books published on the subject in order to count every genus and species ever described.

4.

General and special counts might not mean much. Even under ideal circumstances and with a complete count performed, it's questionable how useful this information would truly be. Bacteria seem to have inhabited the planet for at least 3.5 GA. There has been ample opportunity for Archaea and Bacteria to adapt to every conceivable condition on this planet, so these tendencies could be mere coincidence. While some groups of Archaea and Bacteria certainly appear to contain preponderances of certain varieties of extremophile, many of these adaptations co-evolved in diverse lineages, and are not always indicative of common ancestry. Additionally, genes involved in "planetary" extremophily seem in some cases related to genes involved in "spacial" extremophily. Furthermore, many of these genes were acquired via LGT (Fuchsman, &al. 2017; Herbold et al., 2017).

The conceit here is that the "overal theme" regarding which domain seems to be better at adapting to certain sorts of extremes is indicative, in a very general way, of evolutionary history.

References